Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.008
Filtrar
1.
Analyst ; 149(8): 2459-2468, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38525787

RESUMO

Abundant chemical noise in MALDI imaging mass spectrometry experiments can impede the detection of less abundant compounds of interest. This chemical noise commonly originates from the MALDI matrix as well as other endogenous compounds present in high concentrations and/or with high ionization efficiencies. MALDI imaging mass spectrometry of biological tissues measures numerous biomolecular compounds that exist in a wide range of concentrations in vivo. When ion trapping instruments are used, highly abundant ions can dominate the charge capacity and lead to space charge effects that hinder the dynamic range and detection of lowly abundant compounds of interest. Gas-phase fractionation has been previously utilized in mass spectrometry to isolate and enrich target analytes. Herein, we have characterized the use of multiple continuous accumulations of selected ions (Multi CASI) to reduce the abundance of chemical noise and diminish the effects of space charge in MALDI imaging mass spectrometry experiments. Multi CASI utilizes the mass-resolving capability of a quadrupole mass filter to perform multiple sequential ion isolation events prior to a single mass analysis of the combined ion population. Multi CASI was used to improve metabolite and lipid detection in the MALDI imaging mass spectrometry analysis of rat brain tissue.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenômenos Químicos , Íons/química
2.
Int J Biol Macromol ; 265(Pt 1): 130751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471616

RESUMO

The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.


Assuntos
Quitosana , Polímeros , Polímeros/química , Quitosana/química , Sódio , Eletrólitos/química , Íons/química
3.
Int J Biol Macromol ; 265(Pt 1): 130755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490379

RESUMO

Microwave promoted graft copolymerization of poly (ethyl acrylate) onto kappa-carrageenan in presence of a redox pair (ascorbic acid and potassium persulfate) led to the formation of a novel copolymer hydrogel, kappa-carrageenan-graft-poly (ethylacrylate). By varying the reaction conditions such as the microwave power, reaction time, concentration of kappa-carrageenan, ascorbic acid and persulfate, copolymers of highest percentage grafting was obtained and characterized by FT-IR, SEM, TGA and XRD. The copolymer was evaluated as an adsorbent for the adsorption of Ni(II) and Cd(II). Various adsorption parameters such as contact time, pH, initial metal ion concentration, temperature, electrolyte strength and adsorbent dosage were varied to obtain the optimum conditions for the adsorption. The adsorption data for Cd(II), fitted better for Langmuir and Ni(II), fitted much better for Freundlich adsorption isotherm model. Maximum adsorption obtained for cadmium ions and nickel ions was 308.6 mg/g-1 and 305.8 mg/g-1 respectively. The adsorption of both metal ions followed pseudo second order kinetic model. The positive ΔH values endorsed the adsorption process to be endothermic in nature. The negative values of ΔG indicate the spontaneity of the adsorption process while the positive ΔS values showed that the adsorption of metal ions proceeded with increased randomness at the surface of the copolymer. High recovery percentage of the metal ions from the adsorbent indicates that the copolymer can be used for more adsorption cycles.


Assuntos
Resinas Acrílicas , Cádmio , Poluentes Químicos da Água , Cádmio/química , Carragenina , Termodinâmica , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Metais , Íons/química , Ácido Ascórbico , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
4.
Anal Chem ; 96(10): 4146-4153, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427846

RESUMO

Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Mioglobina/química , Íons/química , Gases/química
5.
Anal Chem ; 96(11): 4612-4622, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38462905

RESUMO

The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme's superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal's authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Ferro , Espectroscopia de Ressonância Magnética , Íons/química , Colorimetria/métodos , Peróxido de Hidrogênio
6.
Sci Rep ; 14(1): 5772, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459204

RESUMO

Aluminum in its Al3+ form is a metal that inhibits plant growth, especially in acidic soils (pH < 5.5). Rapid and accurate quantitative detection of Al3+ in agricultural soils is critical for the timely implementation of remediation strategies. However, detecting metal ions requires time-consuming preparation of samples, using expensive instrumentation and non-portable spectroscopic techniques. As an alternative, electrochemical sensors offer a cost-effective and minimally invasive approach for in situ quantification of metal ions. Here, we developed and validated an electrochemical sensor based on bismuth-modified laser-induced graphene (LIG) electrodes for Al3+ quantitative detection in a range relevant to agriculture (1-300 ppm). Our results show a linear Al3+ detection range of 1.07-300 ppm with a variation coefficient of 5.3%, even in the presence of other metal ions (Pb2+, Cd2+, and Cu2+). The sensor offers a limit of detection (LOD) of 0.34 ppm and a limit of quantification (LOQ) of 1.07 ppm. We compared its accuracy for soil samples with pH < 4.8 to within 89-98% of spectroscopic methods (ICP-OES) and potentiometric titration. This technology's portability, easy to use, and cost-effectiveness make it a promising candidate for in situ quantification and remediation of Al3+ in agricultural soils and other complex matrices.


Assuntos
Grafite , Solo , Alumínio , Bismuto , Íons/química , Lasers , Técnicas Eletroquímicas
7.
Food Chem ; 446: 138770, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428079

RESUMO

Herein, we made 3D MXene-AuNPs by in situ growth of gold nanoparticles (AuNPs) on the surface of MXene by chemical reduction method, and then introduced three sulfhydryl (-SH) compounds as functionalized modifiers attached to the AuNPs to form a highly selective composite material for the detection of Pb2+, Cu2+, and Hg2+, respectively. The doping of AuNPs changes the microstructure of 2D MXene and generates more active sites. On a sensing platform based on ITO array electrodes, the detection system was optimised with sensitivities up to 1.157, 0.846 and 0.799 µA·µg-1Lcm-2 (Pb2+, Cu2+, and Hg2+). The selectivity of MXene@AuNPs was effectively improved by sulfhydryl group modification. In the range of 1-1300 µg L-1, the detection limits of three ions were 0.07, 0.13 and 0.21 µg L-1. In addition, this method can efficiently and accurately detect heavy metal ions in four cereal samples with consistent results with inductively coupled plasma mass spectrometry.


Assuntos
Mercúrio , Nanopartículas Metálicas , Nitritos , Elementos de Transição , Ouro/química , Chumbo , Grão Comestível/química , Nanopartículas Metálicas/química , Mercúrio/análise , Compostos de Sulfidrila/química , Íons/química
8.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
9.
Environ Monit Assess ; 196(4): 364, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478183

RESUMO

In this work, carbon-based nanomaterials such as active carbon which is prepared from common sunflower (Helianthus annuus) seed shell, and the characterization of the activated carbon NPs were studied using FTIR (Fourier transform infrared spectroscopy), XRD, SEM, EDS, and DTA techniques. Activated carbon NPs have been used in the adsorption of Pb(II), Cd(II), and Cr(III) ions from the aqueous phase. The results showed the highest adsorption efficiency was 99.9%, 92.45%, and 98% for Pb(II), Cd(II), and Cr(III) ions respectively at a temperature of 25 °C, pH = 7-9, and a time of 60 and 180 min, in addition to the accordance of the adsorption models for activated carbon with the Freundlich isotherm model at the value of R2 (0.9976, 0.9756, and 0.9907) and Langmuir isotherm model (0.966, 0.999, and 0.9873) of the Pb(II), Cd(II), and Cr(III) ions, respectively. We conclude the possibility of using activated carbon to have an extremely high sorption capacity across the conditions tested, with the highest adsorption efficiency having been >99% for Pb(II), Cd(II), and Cr(III) ions within the pH range 7-9 and a contact time of 60 to 180 min.


Assuntos
Helianthus , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal/química , Cromo/química , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Chumbo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Poluentes Químicos da Água/análise
10.
Luminescence ; 39(3): e4694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414310

RESUMO

Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.


Assuntos
Compostos de Bifenilo , Corantes Fluorescentes , Ferro , Ferro/análise , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Íons/química , Prótons , Cátions , Naftalenos , Imidazóis/química
11.
Biomacromolecules ; 25(3): 1696-1708, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38381837

RESUMO

Wood-derived hydrogels possess satisfactory longitudinal strength but lack excellent swelling resistance and dry shrinkage resistance when achieving high anisotropy. In this study, we displayed the preparation of highly dimensional stable wood/polyacrylamide hydrogels (wood/PAM-Al3+). The alkali-treated wood retains lignin as the skeleton of the hydrogel. Second, Al ions were added to the metal coordination with lignin. Finally, by employing free radical polymerization, we construct a conductive electronic network using polyaniline within the wood/PAM-Al3+ matrix to create the flexible sensor. This approach leverages lignin's integrated structure within the middle lamella to provide enhanced swelling resistance and stronger binding strength in the transverse direction. Furthermore, coordination between lignin and Al ions improves the mechanical strength of the wood hydrogel. Polyaniline provides stable linear pressure and temperature responses. The wood/PAM-Al3+ exhibits a transverse swelling ratio of 3.90% while achieving a longitudinal tensile strength of 20.5 MPa. This high-strength and high-stability sensor is capable of monitoring macroscale human behavior. Therefore, this study presents a simple yet innovative strategy for constructing tough hydrogels while also establishing an alternative pathway for exploring lignin networks in new functional materials development.


Assuntos
Compostos de Anilina , Hidrogéis , Lignina , Humanos , Lignina/química , Hidrogéis/química , Madeira , Íons/química , Condutividade Elétrica
12.
J Chem Inf Model ; 64(5): 1533-1542, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393779

RESUMO

The rotationally averaged collision cross-section (CCS) determined by ion mobility-mass spectrometry (IM-MS) facilitates the identification of various biomolecules. Although machine learning (ML) models have recently emerged as a highly accurate approach for predicting CCS values, they rely on large data sets from various instruments, calibrants, and setups, which can introduce additional errors. In this study, we identified and validated that ion's polarizability and mass-to-charge ratio (m/z) have the most significant predictive power for traveling-wave IM CCS values in relation to other physicochemical properties of ions. Constructed solely based on these two physicochemical properties, our CCS prediction approach demonstrated high accuracy (mean relative error of <3.0%) even when trained with limited data (15 CCS values). Given its ability to excel with limited data, our approach harbors immense potential for constructing a precisely predicted CCS database tailored to each distinct experimental setup. A Python script for CCS prediction using our approach is freely available at https://github.com/MSBSiriraj/SVR_CCSPrediction under the GNU General Public License (GPL) version 3.


Assuntos
Espectrometria de Mobilidade Iônica , Íons/química , Espectrometria de Mobilidade Iônica/métodos
13.
Int J Biol Macromol ; 262(Pt 2): 130150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365157

RESUMO

Magnesium ions (Mg2+) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg2+-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, characterized by a continuous shape with geometric and chemical properties, is important for RNA modelling and carries essential information for understanding the interactions between RNAs and Mg2+ ions. Here, we propose an approach named RNA-magnesium ion surface interaction fingerprinting (RMSIF), a geometric deep learning-based conceptual framework to predict magnesium ion binding sites in RNA structures. To evaluate the performance of RMSIF, we systematically enumerated decoy Mg2+ ions across a full-space grid within the range of 2 to 10 Å from the RNA molecule and made predictions accordingly. Visualization techniques were used to validate the prediction results and calculate success rates. Comparative assessments against state-of-the-art methods like MetalionRNA, MgNet, and Metal3DRNA revealed that RMSIF achieved superior success rates and accuracy in predicting Mg2+-binding sites. Additionally, in terms of the spatial distribution of Mg2+ ions within the RNA structures, a majority were situated in the deep grooves, while a minority occupied the shallow grooves. Collectively, the conceptual framework developed in this study holds promise for advancing insights into drug design, RNA co-transcriptional folding, and structure prediction.


Assuntos
Aprendizado Profundo , RNA , RNA/química , Magnésio/química , Sítios de Ligação , Íons/química
14.
Biosens Bioelectron ; 251: 116125, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359668

RESUMO

Iron is an essential element that plays critical roles in many biological/metabolic processes, ranging from oxygen transport, mitochondrial respiration, to host defense and cell signaling. Maintaining an appropriate iron level in the body is vital to the human health. Iron deficiency or overload can cause life-threatening conditions. Thus, developing a new, rapid, cost-effective, and easy to use method for iron detection is significant not only for environmental monitoring but also for disease prevention. In this study, we report an innovative Fe3+ detection strategy by using both a ligand probe and an engineered nanopore with two binding sites. In our design, one binding site of the nanopore has a strong interaction with the ligand probe, while the other is more selective toward interfering species. Based on the difference in the number of ligand DTPMPA events in the absence and presence of ferric ions, micromolar concentrations of Fe3+ could be detected within minutes. Our method is selective: micromolar concentrations of Mg2+, Ca2+, Cd2+, Zn2+, Ni2+, Co2+, Mn2+, and Cu2+ would not interfere with the detection of ferric ions. Furthermore, Cu2+, Ni2+, Co2+, Zn2+, and Mn2+ produced current blockage events with quite different signatures from each other, enabling their simultaneous detection. In addition, simulated water and serum samples were successfully analyzed. The nanopore sensing strategy developed in this work should find useful application in the development of stochastic sensors for other substances, especially in situations where multi-analyte concurrent detection is desired.


Assuntos
Técnicas Biossensoriais , Nanoporos , Humanos , Ligantes , Técnicas Biossensoriais/métodos , Íons/química , Ferro
15.
Chemosphere ; 352: 141470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367877

RESUMO

A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.


Assuntos
Mercúrio , Peixe-Zebra , Animais , Mercúrio/análise , Metais/química , Íons/química , Pirenos/química
16.
Environ Sci Technol ; 58(8): 3830-3837, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353041

RESUMO

Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.


Assuntos
Iodetos , Iodo , Água/química , Íons/química , Gases , Aerossóis
17.
Anal Chem ; 96(6): 2651-2657, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306178

RESUMO

In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.


Assuntos
Éteres de Coroa , Estruturas Metalorgânicas , Éteres de Coroa/química , Sódio/química , Íons/química , Potássio/química
18.
J Am Chem Soc ; 146(7): 4412-4420, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329282

RESUMO

Ribonucleic acids (RNAs) remain challenging targets for structural biology, creating barriers to understanding their vast functions in cellular biology and fully realizing their applications in biotechnology. The inherent dynamism of RNAs creates numerous obstacles in capturing their biologically relevant higher-order structures (HOSs), and as a result, many RNA functions remain unknown. In this study, we describe the development of native ion mobility-mass spectrometry and collision-induced unfolding (CIU) for the structural characterization of a variety of RNAs. We evaluate the ability of these techniques to preserve native structural features in the gas phase across a wide range of functional RNAs. Finally, we apply these tools to study the elusive mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes-associated A3243G mutation. Our data demonstrate that our experimentally determined conditions preserve some solution-state memory of RNAs via the correlated complexity of CIU fingerprints and RNA HOS, the observation of predicted stability shifts in the control RNA samples, and the retention of predicted magnesium binding events in gas-phase RNA ions. Significant differences in collision cross section and stability are observed as a function of the A3243G mutation across a subset of the mitochondrial tRNA maturation pathway. We conclude by discussing the potential application of CIU for the development of RNA-based biotherapeutics and, more broadly, transcriptomic characterization.


Assuntos
RNA de Transferência , RNA , Íons/química , RNA/genética , Desdobramento de Proteína
19.
Biointerphases ; 19(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341772

RESUMO

In-source fragmentation (ISF) poses a significant challenge in secondary ion mass spectrometry (SIMS). These fragment ions increase the spectral complexity and can lead to incorrect annotation of fragments as intact species. The presence of salt that is ubiquitous in biological samples can influence the fragmentation and ionization of analytes in a significant manner, but their influences on SIMS have not been well characterized. To elucidate the effect of substrates and salt on ISF in SIMS, we have employed experimental SIMS in combination with atomistic simulations of a sphingolipid on a gold surface with various NaCl concentrations as a model system. Our results revealed that a combination of bond dissociation energy and binding energy between N-palmitoyl-sphingomyelin and a gold surface is a good predictor of fragment ion intensities in the absence of salt. However, ion-fragment interactions play a significant role in determining fragment yields in the presence of salt. Additionally, the charge distribution on fragment species may be a major contributor to the varying effects of salt on fragmentation. This study demonstrates that atomistic modeling can help predict ionization potential when salts are present, providing insights for more accurate interpretations of complex biological spectra.


Assuntos
Cloreto de Sódio , Espectrometria de Massa de Íon Secundário , Seguimentos , Espectrometria de Massa de Íon Secundário/métodos , Íons/química
20.
Food Res Int ; 180: 114058, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395579

RESUMO

In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.


Assuntos
Mercúrio , Timina , Espectrometria de Fluorescência/métodos , Timina/química , Sistemas CRISPR-Cas , Mercúrio/química , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...